RESEARCH PAPERS

Acta Cryst. (1998). B54, 705-713

Room-Temperature Superstructure of $\mathbf{Z r V}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}$

J. S. O. Evans, ${ }^{a}$ J. C. Hanson ${ }^{b}$ and A. W. Sleight ${ }^{a_{*}}$
${ }^{a}$ Department of Chemistry and Center for Advanced Materials, Oregon State University, Corvallis, Oregon, USA, and
${ }^{b}$ Department of Chemistry, Brookhaven National Laboratory, Upton, New York, USA.
E-mail: sleighta@chem.orst.edu

(Received 27 May 1997; accepted 14 January 1998)

Abstract

The structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$, zirconium pyrovanadate, has been refined from single-crystal synchrotron X-ray data. As with other phases in the $A M_{2} \mathrm{O}_{7}$ family, $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ shows a set of strong reflections, which can be explained on the basis of a cubic unit cell with $a=8.765 \AA$, and a family of much weaker reflections due to a $3 \times 3 \times 3$ superstructure. The superstructure has been refined to $R_{F}=0.036(a=26.296 \AA, P a \overline{3}, 6972$ reflections $)$ and contains highly regular ZrO_{6} and VO_{4} polyhedra. Of the six unique $\mathrm{V}_{2} \mathrm{O}_{7}$ groups, two are constrained by symmetry to contain linear $\mathrm{V}-\mathrm{O}-\mathrm{V}$ linkages, while the remaining four are free to bend away from 180°. The structural distortions from the ideal high-symmetry structure to the observed room-temperature structure are described.

1. Introduction

The structure of the aristotype of the cubic $A M_{2} \mathrm{O}_{7}$ phases $\left(\mathrm{ZrP}_{2} \mathrm{O}_{7}\right)$ was initially described by Levi \& Peyronel (1935) using a simple cubic unit cell of dimension $a=8.2 \AA$ and space group $P a \overline{3}$. The first structural report of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ appeared some seven years later (Peyronel, 1942). The basic structure consists of corner-sharing $A \mathrm{O}_{6}$ octahedra and MO_{4} tetrahedra (Fig. 1). Each oxygen of an $A \mathrm{O}_{6}$ octahedron is shared with an $M \mathrm{O}_{4}$ tetrahedron. Each $M \mathrm{O}_{4}$ tetrahedron shares three of its four O atoms with an $A \mathrm{O}_{6}$ octahedron, whilst the fourth is shared with another MO_{4} tetrahedron leading to an $M_{2} \mathrm{O}_{7}$ pyrophosphate or pyrovanadate group. The structure can be thought of as related to the facecentered cubic structure of NaCl , with $A \mathrm{O}_{6}$ groups centered at the ideal Na sites and the bridging oxygen of the $M_{2} \mathrm{O}_{7}$ groups at the Cl site. The symmetry of the $M_{2} \mathrm{O}_{7}$ groups necessarily lowers the overall symmetry from $\mathrm{Fm} \overline{3} m$ to $\mathrm{Pa} \overline{3}$. In the ideal structure the bridging O atom of the $M_{2} \mathrm{O}_{7}$ group lies on a $\overline{3}$ site and the $A-\mathrm{O}-$ A angle is therefore constrained to be 180°.

Several workers realized that the linear $M-\mathrm{O}-M$ bonds required by the cubic structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ are
somewhat unusual and that in nearly all cases this simple model would require very short $M-\mathrm{O}$ bridging bond distances (e.g. for $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ a bridging bond distance of $1.46 \AA$ would be required). These structural inconsistencies are clearly reminiscent of those encountered in the more familiar controversy surrounding the crystallochemically implausible $\mathrm{Si}-\mathrm{O}$ distances which must be inferred when assuming the ideal ($C 9$) structure for β-cristobalite.

A potential explanation for this apparent inconsistency came in 1963 when Völlenke et al. (1963) reported evidence for a $3 a \times 3 a \times 3 a$ supercell in singlecrystal X-ray photographs of $\mathrm{GeP}_{2} \mathrm{O}_{7}$. This observation suggested that the apparent linearity of the $M-\mathrm{O}-M$ bond was an artifact owing to the missed superlattice. Refinement of the average position of bent $M_{2} \mathrm{O}_{7}$ groups in each of the 27 'subcells' of the true superstructure leads to an overall disordered atomic arrangement and an apparent linearity of the $M_{2} \mathrm{O}_{7}$ groups.

Subsequently, evidence of similar supercells has been reported for a number of $A M_{2} \mathrm{O}_{7}$ phases, including $\mathrm{SiP}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963; Hagmann \& Kierkegaard, 1969; Liebau et al., 1968), $\mathrm{TiP}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963; Norby, 1996; Sanz et al., 1997), $\mathrm{ZrP}_{2} \mathrm{O}_{7}$ (Hagmann \& Kierkegaard, 1969; Chaunac, 1971; Pascard et al., 1971; Khosrovani \& Sleight, 1996), $\mathrm{SnP}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963; Huang et al., 1975), $\mathrm{CeP}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963), $\mathrm{HfP}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963), $\mathrm{ReP}_{2} \mathrm{O}_{7}$ (Banks \& Sacks, 1982), $\mathrm{PbV}_{2} \mathrm{O}_{7}$ (Völlenke et al., 1963), $\mathrm{Th}_{2} \mathrm{O}_{7}$ (Burdese \& Borlera, 1963), $\mathrm{UP}_{2} \mathrm{O}_{7}$ (Burdese \& Borlera, 1960), $\mathrm{MoP}_{2} \mathrm{O}_{7}$ (Haushalter \& Mundi, 1992) and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ (Korthuis et al., 1995; Khosrovani et al., 1997). However, for cases where powder X-ray data on samples which are not 100% pure are the only evidence, the existence of a true commensurate $3 \times 3 \times 3$ superlattice cannot be considered definitive ($A=\mathrm{Ce}, \mathrm{Th}, \mathrm{U}, \mathrm{Pb}, \mathrm{Re}$). Related phases continue to be reported with the simple cubic cell and it is difficult to know whether these represent true examples of simple cubic systems or whether the superlattice was too weak to be observed by the authors. Examples in this category include $\mathrm{Ta}_{1-x} \mathrm{P}_{1.8+x} \mathrm{O}_{7}$ (Oyetola et al., 1991) and $A A^{\prime} \mathrm{P}_{2} \mathrm{O}_{7}\left(A / A^{\prime}=\mathrm{Bi} / \mathrm{Ta}, \mathrm{Sb} / \mathrm{Ta}\right.$,
$\mathrm{Bi} / \mathrm{Nb}, \mathrm{Nd} / \mathrm{Ta}, \mathrm{Eu} / \mathrm{Nb}, \mathrm{Eu} / \mathrm{Ta}$; Oyetola et al., 1991). In the case of $\mathrm{NbP}_{2} \mathrm{O}_{7}$ the superstructure in a reduced $\mathrm{Nb}^{\mathrm{IV}}$ sample observed in electron diffraction experiments is not observed for oxidized Nb^{V}-containing samples (Fukuoka et al., 1995; Oyetola et al., 1991; Zah Letho et al., 1994). We are unaware of good evidence for superlattice reflections in the isostructural arsenates ($A=\mathrm{Th}$, U).

There has been, to our knowledge, only one published attempt at the single-crystal structure solution of the superstructure of these materials, that of $\mathrm{SiP}_{2} \mathrm{O}_{7}$ by Tillmanns et al. (1973), which used a combination of Xray diffraction data and distance least-squares (DLS) modeling to describe the structure. While a 'tour de force' in its day, computational limitations and the relatively poor data available restricted the authors to an isotropic refinement model.

There has been considerable interest in the negative thermal expansion properties of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ and recent papers have described work on the structure and properties of the $\mathrm{ZrV}_{2-x} \mathrm{P}_{x} \mathrm{O}_{7}$ series using a combination of diffraction and spectroscopic techniques (Korthuis et al., 1995; Khosrovani \& Sleight, 1996; Hudalla et al., 1996). In particular, powder neutron diffraction techniques have been used to try to understand the details of the superstructure and the phase changes observed on warming the sample. Owing to the complexity of the problem ($\mathrm{ZrV}_{2} \mathrm{O}_{7}$ has 50 atoms in the asymmetric unit) and the weak nature of the superlattice reflections (the strongest calculated superlattice reflection is $\sim 1 \%$ of the strongest subcell peak in both X-ray and neutron diffraction patterns), an accurate structure is not possible from powder data.

We were interested in addressing a number of questions concerning the structure and phase transitions of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$. Firstly, determining the true symmetry of the room-temperature structure was especially important

Fig. 1. Ideal cubic structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7} . \mathrm{ZrO}_{6}$ octahedra are shaded, $\mathrm{V}_{2} \mathrm{O}_{7}$ groups are unshaded.
because, unlike the $A \mathrm{P}_{2} \mathrm{O}_{7}$ cubic phases, $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ has two phase transitions above room temperature. Secondly, we wanted to be able to describe the precise nature of the polyhedral tilts and/or distortions which lead to the superstructure formation. In this work we report the single-crystal X -ray structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ using data collected at beamline X7B of the National Synchrotron Light Source (NSLS). Temperature-dependent studies including structure refinements at both 363 and 375 K have also been performed and suggest a simple model for the observed thermal expansion behavior. At 345 K, however, an incommensurate superlattice phase is formed. These experiments are the subject of another publication (Withers et al., 1998).

2. Experimental

$\mathrm{ZrV}_{2} \mathrm{O}_{7}$ melts incongruently to ZrO_{2} and a liquid at a temperature reported to be 1020 K (Burdese \& Borlera, 1960) or 1113 K (Buchanan \& Walter, 1983). Single crystals were grown from a $\mathrm{V}_{2} \mathrm{O}_{5}$-rich melt. Reagents were heated to 1123 K in a platinum crucible, then cooled at $2 \mathrm{~K} \mathrm{~h}^{-1}$ to 1023 K and then at $10 \mathrm{~K} \mathrm{~h}^{-1}$ to room temperature. An approximately cubic crystal was mounted on a glass fiber for data collection. Preliminary precession photographs confirmed the presence of a $3 a$ $\times 3 a \times 3 a$ superstructure. Full experimental details are given in Table 1.

Data were collected using a Fuji image plate system on beamline X7B of the NSLS with wavelength $1.088 \AA$ (calibrated with an LaB_{6} standard). Using a 2θ film offset of 0°, data were collected with 4° rotation intervals (2000 steps per degree) over a 180° angular range. Two data sets were collected at a scan speed of $0.01^{\circ} \mathrm{s}^{-1}$ and a scan speed of $0.025^{\circ} \mathrm{s}^{-1}$ to increase the effective dynamic range of the image plates. A third set of images was collected over a 90° range with image plates at $2 \theta=$ 40°, using a rotation range of 3° per image and a scan speed of $0.01^{\circ} \mathrm{s}^{-1}$.

Digitized image plates were indexed, integrated, scaled and merged using the $D E N Z O$ and SCALEPACK software packages (Otwinowski, 1993; Minor, 1993). For final refinements data over the rotation range $0-90^{\circ}$ were used (76 images in total). No absorption correction was applied. A total of 77208 measured reflections were merged to 10158 unique reflections with an overall $R_{\text {merge }}$ of 0.058 (based on I). Of these, 2440 reflections were measured once only, 2393 twice only. Of the 10158 unique reflections, 9456 were observed to have $I>0$ and 6972 had $I>3 \sigma(I)$. Some 6647 of these are 'superlattice' reflections. Various other intensity sets were prepared to check refinement results: sets using/excluding the strongest/weakest reflections and sets using only reflections measured at least two or three times. These are discussed in the main body of the text. The F^{2} and $\sigma\left(F^{2}\right)$ values were then rescaled to an F8.2 format and subsequent refinement was carried out
within the Oxford CRYSTALS suite of programs (Watkin et al., 1985). Distance least-squares calculations were performed using both DLS-76 (Baerlocher et al., 1977) and CRYSTALS (Watkin et al., 1985). Polyhedral tilt angles were derived by least-squares fitting of an octahedron with fixed 90° bond angles, but with an overall $M-\mathrm{O}$ distance allowed to refine, within the GSAS suite of programs (Larson \& Von Dreele, 1994).

The cubic cell edge of the room-temperature phase was obtained from a number of sources. Refinement of the cell edge within the $D E N Z O$ program suite gave $26.296 \AA$. Least-squares refinement of the position of 25 high-angle ($2 \theta>45^{\circ}$) subcell reflections accurately centered on a Rigaku AFC-6R diffractometer using Mo $K \alpha(\lambda=0.71069 \AA)$ radiation gave a cell edge of 26.2988 (9) \AA. Least-squares refinement of the position of 20 sub- and supercell reflections of a powdered sample of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ collected on beamline $\mathrm{X7A}$ of the NSLS gave a cell edge of 26.3082 (2) \AA. Bond distances and angles reported are based on the cell edge of 26.296 A.

3. Structure refinement

Analysis of the images obtained suggested that all reflections could be indexed on a cubic cell with $a=$ 26.296 A. No evidence of any metric lowering of symmetry was obtained. Systematic absences ($0 k l, k=$ $2 n$) suggested the space group $P a \overline{3}$. Some very weak violations of these extinction conditions were observed and of the 3610 kl reflections with $I>3 \sigma(I)$ recorded, some 21 reflections were 'observed' with $k=$ odd. However, all these reflections were relatively weak [the strongest 'violation' ranked 4425 of the 6972 reflections with $I>3 \sigma(I)$ measured and was only 1.3% of the intensity of the strongest superlattice reflection or $\sim 0.02 \%$ of the strongest sublattice reflection; 19 of the 21 violations ranked below 6200 , i.e. $<0.4 \%$ of the strongest superlattice reflection] and also showed considerable scatter in the intensities measured on individual images. These reflections were also all subcell reflections (i.e. $h, k, l=3 n$) and could arise from multiple diffraction effects. Separate scaling then merging of Friedel pairs indicated no significant anomalous signal, which could indicate a reduction of symmetry to noncentrosymmetric $P 2_{1}$. Thus, the space groups of the room- and high-temperature ($>375 \mathrm{~K}$) ideal $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ structures are identical and, in fact, the maximal isomorphic subgroup of $P a \overline{3}$ is $P a \overline{3}\left(a^{\prime}=3 a, b^{\prime}=3 b, c^{\prime}=\right.$ $3 c$). The transition from the high- to the low-temperature structure preserves the point group, but destroys 26/27 of the translational symmetry elements and twothirds of the threefold axes.

Approximate starting coordinates for structure refinement were obtained from previous powder work (Khosrovani et al., 1997). Least-squares refinement (anisotropic displacement parameters, 407 variables) of

Table 1. Experimental details

Crystal data

Chemical formula	$\mathrm{ZrV}_{2} \mathrm{O}_{7}$
Chemical formula weight	305.0988
Cell setting	Cubic
Space group	$\mathrm{Pa} \overline{3}$
$a\left(\AA \AA^{\circ}\right)$	26.296
$V\left(\AA^{3}\right)$	18183.15
Z	108
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	3.009
Radiation type	Synchrotron
Wavelength (\AA)	1.088
$\mu\left(\mathrm{~mm}^{-1}\right)$	4.11
Temperature (K)	298
Crystal form	Cubic
Crystal size (mm)	$0.1 \times 0.1 \times 0.1$
Crystal color	Orange

Data collection
Diffractometer
Data collection method
Absorption correction
No. of measured reflections
No. of independent reflections
No. of observed reflections Criterion for observed reflections $R_{\text {int }}$
Range of h, k, l

Refinement
Refinement on
R
$w R$
S
No. of reflections used in refinement
No. of parameters used
Weighting scheme
$(\Delta / \sigma)_{\text {max }}$
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Extinction method
Source of atomic scattering factors

Fuji image plate system
φ scans
None
77208
10158
6972
$I>3 \sigma(I)$
0.058
$0 \rightarrow h \rightarrow 27$
$0 \rightarrow k \rightarrow 28$
$1 \rightarrow l \rightarrow 39$

F
0.0366
0.0414
0.905

6972

407
Third-order Chebyshev polynomial, coefficients $0.280,0.245$, 0.056

0
1.00
-2.39
Larson (1970) (equation 22)
International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)
the full data set using unit weights led rapidly to an R factor of $R_{F}=0.0431, w R_{F}=0.0525$, suggesting an essentially correct structural model. Comparison of $F_{\text {obs }}$ and $F_{\text {calc }}$ suggested some systematic errors, with the strongest reflections significantly overestimated. Application of a third-order Chebychev polynomial weighting scheme could correct for these errors and led to a final R factor of $R_{F}=0.0360, w R_{F}=0.0414$. Such a systematic error is to be expected. Owing to the high intensity of the subcell reflections relative to the supercell reflections, even at the faster scan speed used at $2 \theta=0^{\circ}$ and on the high-angle $2 \theta=40^{\circ}$ images, several of the strongest subcell peaks remained saturated.

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
	x			
$\mathrm{Zr}(1)$	$0.497434(8)$	$-0.001114(8)$	$0.165602(8)$	0.0063
$\mathrm{Zr}(2)$	$0.500084(8)$	$0.32661(1)$	$0.164329(9)$	0.0061
$\mathrm{Zr}(3)$	$0.496217(8)$	$0.170143(9)$	$0.34384(1)$	0.0054
$\mathrm{Zr}(4)$	$0.331355(8)$	$0.162024(9)$	$0.166102(8)$	0.0064
$\mathrm{Zr}(5)$	$0.334645(8)$	$0.334645(8)$	$0.334645(8)$	0.0068
$\mathrm{Zr}(6)$	$1 / 2$	$1 / 2$	0	0.0064
$\mathrm{~V}(1)$	$0.46207(2)$	$0.12653(2)$	$0.13145(2)$	0.0099
$\mathrm{~V}(2)$	$0.47030(2)$	$0.45683(2)$	$0.12993(2)$	0.0094
$\mathrm{~V}(3)$	$0.36952(2)$	$0.29152(2)$	$0.12774(2)$	0.0094
$\mathrm{~V}(4)$	$0.29521(2)$	$0.36857(2)$	$0.20539(2)$	0.0096
$\mathrm{~V}(5)$	$0.30164(2)$	$0.12878(2)$	$0.03361(2)$	0.0086
$\mathrm{~V}(6)$	$0.37478(2)$	$0.21139(2)$	$-0.03950(2)$	0.0097
$\mathrm{~V}(7)$	$0.53727(2)$	$0.54143(2)$	$0.20594(2)$	0.0096
$\mathrm{~V}(8)$	$0.53403(2)$	$0.20035(2)$	$0.21313(2)$	0.0092
$\mathrm{~V}(9)$	$0.20147(2)$	$0.20147(2)$	$0.20147(2)$	0.0103
$\mathrm{~V}(10)$	$0.53834(2)$	$-0.03834(2)$	$0.03834(2)$	0.0087
$\mathrm{~V}(11)$	$0.12459(2)$	$0.12459(2)$	$0.12459(2)$	0.0093
$\mathrm{O}(11)$	$0.48004(8)$	$0.06539(8)$	$0.12620(8)$	0.0193
$\mathrm{O}(12)$	$0.40009(8)$	$0.12892(9)$	$0.14660(9)$	0.0237
$\mathrm{O}(13)$	$0.47258(9)$	$0.15725(8)$	$0.07648(8)$	0.0197
$\mathrm{O}(21)$	$0.49048(8)$	$0.39627(8)$	$0.12804(8)$	0.0205
$\mathrm{O}(22)$	$0.4726(1)$	$0.48128(9)$	$0.07129(8)$	0.0231
$\mathrm{O}(23)$	$0.41032(8)$	$0.45904(8)$	$0.15181(9)$	0.0202
$\mathrm{O}(31)$	$0.3524(1)$	$0.3083(1)$	$0.06917(9)$	0.0259
$\mathrm{O}(32)$	$0.3565(1)$	$0.22994(9)$	$0.1359(1)$	0.0281
$\mathrm{O}(33)$	$0.43193(8)$	$0.3013(1)$	$0.13571(9)$	0.0242
$\mathrm{O}(41)$	$0.23557(8)$	$0.36060(9)$	$0.18436(9)$	0.0238
$\mathrm{O}(42)$	$0.3133(1)$	$0.42848(9)$	$0.1951(1)$	0.0257
$\mathrm{O}(43)$	$0.29834(9)$	$0.35604(9)$	$0.26787(8)$	0.0232
$\mathrm{O}(51)$	$0.30180(9)$	$0.14271(9)$	$0.09573(8)$	0.0227
$\mathrm{O}(52)$	$0.24174(8)$	$0.12759(9)$	$0.01154(9)$	0.0209
$\mathrm{O}(53)$	$0.32893(8)$	$0.07216(8)$	$0.02455(9)$	0.0214
$\mathrm{O}(61)$	$0.35597(8)$	$0.27237(8)$	$-0.03702(8)$	0.0201
$\mathrm{O}(62)$	$0.43498(8)$	$0.20653(8)$	$-0.01851(9)$	0.0218
$\mathrm{O}(63)$	$0.37015(9)$	$0.18931(9)$	$-0.09934(8)$	0.0229
$\mathrm{O}(71)$	$0.52060(9)$	$0.53508(8)$	$0.26734(8)$	0.0221
$\mathrm{O}(72)$	$0.51715(9)$	$0.59745(8)$	$0.18395(9)$	0.0237
$\mathrm{O}(73)$	$0.60074(8)$	$0.53739(9)$	$0.20051(9)$	0.0229
$\mathrm{O}(81)$	$0.51072(9)$	$0.25854(8)$	$0.20207(9)$	0.0231
$\mathrm{O}(82)$	$0.59407(8)$	$0.19718(9)$	$0.19242(9)$	0.0229
$\mathrm{O}(83)$	$0.53230(9)$	$0.18804(9)$	$0.27580(8)$	0.0234
$\mathrm{O}(91)$	$0.26222(8)$	$0.1951(1)$	$0.18376(9)$	0.0248
$\mathrm{O}(101)$	$0.59815(8)$	$-0.01624(8)$	$0.03707(8)$	0.0194
$\mathrm{O}(111)$	$0.06452(8)$	$0.14578(9)$	$0.12622(9)$	0.0217
$\mathrm{O}(108)$	$0.4973(10)$	$0.1550(1)$	$0.1807(1)$	0.0307
$\mathrm{O}(207)$	$0.5101(1)$	$0.4920(1)$	$0.1707(1)$	0.0323
$\mathrm{O}(304)$	$0.3362(1)$	$0.3271(1)$	$0.1730(1)$	0.0363
$\mathrm{O}(506)$	$0.3357(1)$	$0.1759(1)$	$0.0004(1)$	0.0335
$\mathrm{O}(911)$	$0.16284(9)$	$0.16284(9)$	$0.16284(9)$	0.0360
$\mathrm{O}(1010)$	$1 / 2$	0	0	0.0361

To verify these effects, refinement was also performed with the 300 most intense reflections excluded from the data set. Using unit weights an agreement factor of $R_{F}=$ 0.0366 (6641 reflections) was obtained (cf. 0.0360 using all data). Atomic shifts between these two models of refinement were small (average shift $0.005 \AA$; maximum shift $0.010 \AA$). Refinements were also performed using just reflections which had been recorded at least two or
at least three times. The greater redundancy of such data sets can be expected to yield better average intensity data. Reflections measured ≥ 2 times yielded an overall agreement factor of $R_{F}=0.0337, w R_{F}=0.0397$ [5586 reflections with $I>3 \sigma(I)]$; for reflections measured ≥ 3 times $R_{F}=0.0328, w R_{F}=0.0351$ [4067 reflections with $I>$ $3 \sigma(I)]$. Average atomic shifts between all these refinements were small ($<0.01 \AA$). We choose to report here results based on the weighted refinement of all data, as the larger number of reflections (particularly at high angles where redundancy is lowest) can be expected to yield a more accurate refined model. Final atomic coordinates and displacement parameters are reported in Table 2, distances and angles in Table 3. \dagger We emphasize that such a model gives good agreement with both subcell and supercell reflections. With a fixed scale factor and a unit weighting scheme R_{F} values are 0.0413 , 0.0466 and 0.0540 for all, subcell only ($h, k, l=3 n$) and supercell reflections, respectively.
A view of a section of the refined structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ is shown in Fig. 2, along with a view of the ideal undistorted structure. The structure of the room-temperature form of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ is closely related to that of the ideal high-temperature form. Indeed, the room-temperature structure can be readily derived from the hightemperature form via a three-dimensionally coupled rotation of the polyhedral building blocks of the framework structure. The loss of symmetry elements associated with this transition is such that whilst the high-temperature structure contains one Zr atom and one V atom in the asymmetric unit, the room-temperature structure contains six unique Zr sites and 11 V . Of the 11 V atoms, three (V9, V10 and V11) lie on the threefold axis. Of the six unique $\mathrm{V}_{2} \mathrm{O}_{7}$ groups in the cell (O 1010 in the structure lies on an inversion center; $\mathrm{V} 10-\mathrm{O} 1010-\mathrm{V} 10$ therefore forms a $\mathrm{V}_{2} \mathrm{O}_{7}$ group) two are therefore constrained by symmetry to have $\mathrm{V}-\mathrm{O}-$ V 180° bridging bond angles. The remaining four groups, however, can bend away from 180°, leading to an overall volume decrease in the structure. Bridging bond angles (Table 3, Fig. 3) of 159.3, 162.9, 166.2 and 167.6° result.
This coupled rotation of the polyhedral building blocks also leads to a range of $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ bond angles. In the ideal high-symmetry structure the single $\mathrm{Zr}-\mathrm{O}-$ V bond angle would be expected to be 163° (derived from DLS refinements using experimentally determined average $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ distances); in the roomtemperature structure the 27 unique $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ bond angles range from 145 to 174° (average $=158^{\circ}$, standard uncertainty of the individual angles 6.3°), see Fig. 4.

Individual metal-oxygen distances in the structure show a remarkably narrow range of values. The average $\mathrm{Zr}-\mathrm{O}$ bond distance is $2.0695 \AA$ with a standard

[^0]Table 3. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Zr}(1)-\mathrm{O}(11)$	2.084 (2)	$\mathrm{V}(3)-\mathrm{O}(31)$	1.665 (2)
$\mathrm{Zr}(1)-\mathrm{O}(13)$	2.075 (2)	$\mathrm{V}(3)-\mathrm{O}(32)$	1.669 (2)
$\mathrm{Zr}(1)-\mathrm{O}(53)$	2.083 (2)	$\mathrm{V}(3)-\mathrm{O}(33)$	1.674 (2)
$\mathrm{Zr}(1)-\mathrm{O}(62)$	2.071 (2)	$\mathrm{V}(4)-\mathrm{O}(41)$	1.676 (2)
$\mathrm{Zr}(1)-\mathrm{O}(71)$	2.059 (2)	$\mathrm{V}(4)-\mathrm{O}(42)$	1.668 (2)
$\mathrm{Zr}(1)-\mathrm{O}(101)$	2.070 (2)	$\mathrm{V}(4)-\mathrm{O}(43)$	1.678 (2)
$\mathrm{Zr}(2)-\mathrm{O}(21)$	2.081 (2)	$\mathrm{V}(5)-\mathrm{O}(51)$	1.674 (2)
$\mathrm{Zr}(2)-\mathrm{O}(31)$	2.068 (2)	$\mathrm{V}(5)-\mathrm{O}(52)$	1.679 (2)
$\mathrm{Zr}(2)-\mathrm{O}(33)$	2.055 (2)	$\mathrm{V}(5)-\mathrm{O}(53)$	1.670 (2)
$\mathrm{Zr}(2)-\mathrm{O}(61)$	2.078 (2)	$\mathrm{V}(6)-\mathrm{O}(61)$	1.679 (2)
$\mathrm{Zr}(2)-\mathrm{O}(73)$	2.066 (2)	$\mathrm{V}(6)-\mathrm{O}(62)$	1.681 (2)
$\mathrm{Zr}(2)-\mathrm{O}(81)$	2.066 (2)	$\mathrm{V}(6)-\mathrm{O}(63)$	1.682 (2)
$\mathrm{Zr}(3)-\mathrm{O}(23)$	2.060 (2)	$\mathrm{V}(7)-\mathrm{O}(71)$	1.681 (2)
$\mathrm{Zr}(3)-\mathrm{O}(42)$	2.061 (2)	$\mathrm{V}(7)-\mathrm{O}(72)$	1.669 (2)
$\mathrm{Zr}(3)-\mathrm{O}(52)$	2.067 (2)	$\mathrm{V}(7)-\mathrm{O}(73)$	1.678 (2)
$\mathrm{Zr}(3)-\mathrm{O}(72)$	2.076 (2)	$\mathrm{V}(8)-\mathrm{O}(81)$	1.674 (2)
$\mathrm{Zr}(3)-\mathrm{O}(83)$	2.079 (2)	$\mathrm{V}(8)-\mathrm{O}(82)$	1.672 (2)
$\mathrm{Zr}(3)-\mathrm{O}(111)$	2.063 (2)	$\mathrm{V}(8)-\mathrm{O}(83)$	1.680 (2)
$\mathrm{Zr}(4)-\mathrm{O}(12)$	2.071 (2)	$\mathrm{V}(9)-\mathrm{O}(91) \times 3$	1.672 (2)
$\mathrm{Zr}(4)-\mathrm{O}(32)$	2.063 (2)	$\mathrm{V}(10)-\mathrm{O}(101) \times 3$	1.677 (2)
$\mathrm{Zr}(4)-\mathrm{O}(41)$	2.067 (2)	$\mathrm{V}(11)-\mathrm{O}(111) \times 3$	1.676 (2)
$\mathrm{Zr}(4)-\mathrm{O}(51)$	2.070 (2)	$\mathrm{V}(1)-\mathrm{O}(108)$	1.761 (2)
$\mathrm{Zr}(4)-\mathrm{O}(82)$	2.062 (2)	$\mathrm{V}(8)-\mathrm{O}(108)$	1.755 (2)
$\mathrm{Zr}(4)-\mathrm{O}(91)$	2.068 (2)	$\mathrm{V}(2)-\mathrm{O}(207)$	1.762 (2)
$\mathrm{Zr}(5)-\mathrm{O}(43) \times 3$	2.076 (2)	$\mathrm{V}(7)-\mathrm{O}(207)$	1.748 (2)
$\mathrm{Zr}(5)-\mathrm{O}(63) \times 3$	2.069 (2)	$\mathrm{V}(3)-\mathrm{O}(304)$	1.749 (2)
$\mathrm{Zr}(6)-\mathrm{O}(22) \times 6$	2.068 (2)	$\mathrm{V}(4)-\mathrm{O}(304)$	1.754 (2)
$\mathrm{V}(1)-\mathrm{O}(11)$	1.681 (2)	$\mathrm{V}(5)-\mathrm{O}(506)$	1.761 (3)
$\mathrm{V}(1)-\mathrm{O}(12)$	1.679 (2)	V (6)-O(506)	1.740 (3)
$\mathrm{V}(1)-\mathrm{O}(13)$	1.679 (2)	$\mathrm{V}(9)-\mathrm{O}(911)$	1.759 (4)
$\mathrm{V}(2)-\mathrm{O}(22)$	1.672 (2)	$\mathrm{V}(11)-\mathrm{O}(911)$	1.742 (4)
$\mathrm{V}(2)-\mathrm{O}(23)$	1.680 (2)	$\mathrm{V}(10)-\mathrm{O}(1010) \times 2$	1.7460 (7)
$\mathrm{Zr}(1)-\mathrm{O}(11)-\mathrm{V}(1)$	145.4 (1)	$\mathrm{Zr}(5)-\mathrm{O}(63)-\mathrm{V}(6)$	157.3 (1)
$\mathrm{Zr}(4)-\mathrm{O}(12)-\mathrm{V}(1)$	157.2 (1)	$\mathrm{Zr}(1)-\mathrm{O}(71)-\mathrm{V}(7)$	158.2 (1)
$\mathrm{Zr}(1)-\mathrm{O}(13)-\mathrm{V}(1)$	155.8 (1)	$\mathrm{Zr}(3)-\mathrm{O}(72)-\mathrm{V}(7)$	171.3 (2)
$\mathrm{Zr}(2)-\mathrm{O}(21)-\mathrm{V}(2)$	149.3 (1)	$\mathrm{Zr}(2)-\mathrm{O}(73)-\mathrm{V}(7)$	149.8 (1)
$\mathrm{Zr}(6)-\mathrm{O}(22)-\mathrm{V}(2)$	160.1 (2)	$\mathrm{Zr}(2)-\mathrm{O}(81)-\mathrm{V}(8)$	157.7 (1)
$\mathrm{Zr}(3)-\mathrm{O}(23)-\mathrm{V}(2)$	153.3 (1)	$\mathrm{Zr}(4)-\mathrm{O}(82)-\mathrm{V}(8)$	159.5 (2)
$\mathrm{Zr}(2)-\mathrm{O}(31)-\mathrm{V}(3)$	173.7 (2)	$\mathrm{Zr}(3)-\mathrm{O}(83)-\mathrm{V}(8)$	154.2 (1)
$\mathrm{Zr}(4)-\mathrm{O}(32)-\mathrm{V}(3)$	162.8 (2)	$\mathrm{Zr}(3)-\mathrm{O}(111)-\mathrm{V}(11)$	159.0 (1)
$\mathrm{Zr}(2)-\mathrm{O}(33)-\mathrm{V}(3)$	161.9 (1)	$\mathrm{Zr}(4)-\mathrm{O}(91)-\mathrm{V}(9)$	160.8 (2)
$\mathrm{Zr}(4)-\mathrm{O}(41)-\mathrm{V}(4)$	165.3 (2)	$\mathrm{Zr}(1)-\mathrm{O}(101)-\mathrm{V}(10)$	153.6 (1)
$\mathrm{Zr}(3)-\mathrm{O}(42)-\mathrm{V}(4)$	168.3 (2)	$\mathrm{V}(1)-\mathrm{O}(108)-\mathrm{V}(8)$	159.3 (2)
$\mathrm{Zr}(5)-\mathrm{O}(43)-\mathrm{V}(4)$	154.7 (1)	$\mathrm{V}(2)-\mathrm{O}(207)-\mathrm{V}(7)$	162.9 (2)
$\mathrm{Zr}(4)-\mathrm{O}(51)-\mathrm{V}(5)$	157.9 (1)	$\mathrm{V}(3)-\mathrm{O}(304)-\mathrm{V}(4)$	166.2 (2)
$\mathrm{Zr}(3)-\mathrm{O}(52)-\mathrm{V}(5)$	156.2 (1)	$\mathrm{V}(5)-\mathrm{O}(506)-\mathrm{V}(6)$	167.6 (2)
$\mathrm{Zr}(1)-\mathrm{O}(53)-\mathrm{V}(5)$	156.5 (1)	$\mathrm{V}(9)-\mathrm{O}(911)-\mathrm{V}(11)$	180
$\mathrm{Zr}(2)-\mathrm{O}(61)-\mathrm{V}(6)$	153.2 (1)	$\mathrm{V}(10)-\mathrm{O}(101)-\mathrm{V}(10)$	180
$\mathrm{Zr}(1)-\mathrm{O}(62)-\mathrm{V}(6)$	153.0 (1)		

uncertainty of the 27 values of $0.0075 \AA$ (cf. a typical experimental s.u. on an individual distance of $0.002 \AA$) and a range of only $2.055-2.084 \AA$. The average $\mathrm{V}-\mathrm{O}_{\mathrm{Zr}}$ (i.e. a $\mathrm{V}-\mathrm{O}$ distance of a $\mathrm{V}-\mathrm{O}-\mathrm{Zr}$ linkage) is $1.6757 \AA$ with a standard uncertainty in the 27 values of $0.0046 \AA$ and a range of $1.665-1.682 \AA$. Internal bond angles of the ZrO_{6} and VO_{4} polyhedra show minimal departure from ideal octahedral and tetrahedral values. The $72 \mathrm{ZrO}_{6} 90^{\circ}$ angles show a range of $88.0-92.0^{\circ}$ with a standard uncertainty of 1°. The $66 \mathrm{VO}_{4}$ tetrahedral bond angles show a range of $108.3-110.6^{\circ}$ with a standard uncertainty of 0.47°. The difference between tetrahedral
angles involving bridging O atoms (i.e. $\mathrm{O}_{\mathrm{v}}-\mathrm{V}-\mathrm{O}_{\mathrm{zr}}$) and nonbridging O atoms (i.e. $\mathrm{O}_{\mathrm{Zr}}-\mathrm{V}-\mathrm{O}_{\mathrm{Zr}}$) is small, averages being $109.3(5)^{\circ}$ (18 bond angles) and 109.5 (5) ${ }^{\circ}$ (48 bond angles), respectively.

The dependence of both $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}_{\mathrm{Zr}}$ distances on the $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ angle is small. Fig. 4 shows the dependence of $\mathrm{V}-\mathrm{Zr}$ nonbonded distances on the angle of the $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ bond. The 27 such distances agree well with predicted values derived from overall average bond distances (using average $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ distances, the

(a)

(b)

Fig. 2. View down [100] of (a) a section of the ideal (high-temperature) structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ and (b) the distorted room-temperature structure; Zr as black circles, V as shaded circles, O as either open (general position) or cross-hatched (threefold axis) circles. In the ideal structure all bridging $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angles are constrained by symmetry to be 180°. In the room-temperature structure arrowed bonds can distort to a more favorable arrangement. The V-atom numbering scheme is shown.
experimentally determined bond angle and simple geometrical arguments). This suggests that the $\mathrm{Zr}-\mathrm{O}-$ V bridges can be viewed as ideally flexible and little distortion of individual bond distances occurs as the bond is bent.

The $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ bridging bonds of the $\mathrm{V}_{2} \mathrm{O}_{7}$ units are systematically longer than the $\mathrm{V}-\mathrm{O}_{\mathrm{zr}}$ bonds with an average distance of $1.7525 \AA$ and standard uncertainty of $0.0076 \AA$. The overall range found for the 11 unique distances is $1.740-1.762 \AA$. Fig. $5(a)$ shows how the V V distance of each $\mathrm{V}-\mathrm{O}-\mathrm{V}$ linkage depends on the observed bond angle. The trend observed clearly shows that the $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ distance is correlated with the bridging bond angle, with linear bonds being somewhat shorter than bent bonds. Similar effects have been observed in silicates where the $\mathrm{Si}-\mathrm{O}$ bond distance has been calculated to vary between 1.638 and $1.596 \AA$ as the bond angle changes from 120 to 180° (Gibbs et al., 1994). The origin of this effect, even in silicates, remains controversial, with some authors invoking increased d-orbital π-bonding contributions as the bond angle approaches 180°. The $3 d$ orbitals are much more likely to be relevant to bonding in vanadates; thus, an even greater shortening of the $\mathrm{V}-\mathrm{O}$ bond might be anticipated as the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angle approaches 180°. Fig. 6 shows data taken from 17 of the 20 structural refinements of $M_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ compounds reported ($M=\mathrm{Cu}, \mathrm{Mg}$,

Fig. 3. Views of the six independent $\mathrm{V}_{2} \mathrm{O}_{7}$ groups along the threefold axis.
$\mathrm{Co}, \mathrm{Ni}, \mathrm{Hg}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Sr}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Ba})$. The three structures available in the ICSD omitted from this plot each showed chemically implausible bond distances/calculated atomic valences. There is again an overall decrease in the $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ distance as a function of increasing bond angle. Clearly the direct comparison of these two curves is not completely justified as the $M_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ structures will contain other structure-directing interactions (e.g. bonding interactions directly between the bridging O atom and M cations which are not present in the framework $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ structure). It is interesting to note, nonetheless, that the extrapolated 180° value of this line of $d=1.744 \AA$ is very close to the average value observed for the two $180^{\circ} \mathrm{V}_{2} \mathrm{O}_{7}$ groups of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ $(1.7525 \mathrm{~A})$. Data from the current refinement are included in Fig. 6 for comparison.

There is some question as to whether these effects are merely an artifact of enhanced thermal motion in the bridging O atoms of the threefold $\mathrm{V}_{2} \mathrm{O}_{7}$ groups. Analysis of equivalent displacement parameters of the O atoms in the structure suggests that $\mathrm{V}-\mathrm{O}-\mathrm{V}$ O atoms do have larger displacement parameters than $\mathrm{Zr}-\mathrm{O}-\mathrm{V} \mathrm{O}$ atoms $\left[\mathrm{V}-\mathrm{O}-\mathrm{V}\right.$ average $U_{\text {eq }}=0.034$ (2); $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ average $\left.U_{\text {eq }}=0.023(3) \AA^{2}\right]$. The displacement parameters of the threefold O atoms (both values $=$ $0.036 \AA^{2}$) are not, however, significantly different from other $\mathrm{V}-\mathrm{O}-\mathrm{V} \mathrm{O}$ atoms. The magnitude of the displacement ellipsoid of these threefold O atoms corresponds to an r.m.s. displacement of approximately 0.24 A perpendicular to the threefold axis. It is therefore difficult to conclude from diffraction data alone whether or not the threefold $\mathrm{V}-\mathrm{O}-\mathrm{V}$ groups truly contain 180° bonds. For a V-V distance of $3.5 \AA$ a static displacement of this magnitude would result in a bond angle of approximately 164°. A recent combined NMR and powder X-ray study by Sanz et al. (1997) on $\mathrm{TiP}_{2} \mathrm{O}_{7}$ was interpreted in terms of static disorder around the threefold axis. The proximity of room-temperature $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ to two displacive phase transitions might

Fig. 4. Dependence of $\mathrm{Zr}-\mathrm{V}$ distance on the $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ bond angle. The 27 observed distances are shown as points, whilst the calculated curve using experimentally determined average $\mathrm{Zr}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ distances is given as a full line.

Table 4. Tilt angles $\left({ }^{\circ}\right)$ of the six unique ZrO_{6} octahedra
Values for all six polyhedra in an ideal untilted structure would be x tilt $=-24.43^{\circ}, y$ tilt $=-15.88^{\circ}, z$ tilt $=-24.43^{\circ}$.

Octahedron	x tilt obs	y tilt obs	z tilt obs	x tilt calc	y tilt calc	z tilt calc
1	-30.712	-4.8560	-19.244	-30.670	-5.7180	-19.610
2	-30.714	-21.211	-20.434	-30.045	-20.469	-21.001
3	-22.413	-22.642	-20.176	-22.371	-21.872	-20.266
4	-23.666	-13.809	-25.736	-24.711	-14.184	-25.857
5	-28.280	-17.122	-28.280	-27.761	-16.970	-27.761
6	-20.279	-14.401	-20.279	-20.084	-14.115	-20.084

suggest dynamic disorder as being more likely in this case. However, given the complexity of $\mathrm{V}-\mathrm{O}$ bonding and the recent description of correlations between bending vibrations and $M-\mathrm{O}$ bond distances in these structures (Seo \& Whangbo, 1997), we do not feel that the current data permit firm conclusions as to the true nature of this bond. It is clear, however, that the phase transition from the simple cubic high-temperature structure, which allows the ordered distortion of four of the six $\mathrm{V}_{2} \mathrm{O}_{7}$ groups to a more favorable geometry, does not relieve the frustration of the remaining two.

Fig. 5. (a) Dependence of $\mathrm{V}-\mathrm{V}$ distance on the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angle. Observed data shown as joined points, calculated distances based on average $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ distances as a heavy line. (b) Dependence of average $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ distance on $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angle for the six independent $\mathrm{V}_{2} \mathrm{O}_{7}$ groups.

Given the complexity of the room-temperature structure of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$, the magnitudes of the roomtemperature distortions are most readily visualized by considering the polyhedra of the structure rather than individual atomic shifts. Table 4 shows the experimentally observed tilt angles of the six individual ZrO_{6} octahedra. Tilt angles are defined as the angle that a regular $M \mathrm{O}_{6}$ octahedron would have to be tilted around the z, y and x axes to achieve the least-squares fit to the observed ZrO_{6} positions. These data are also shown graphically in Fig. 7 relative to values for an ideal structure.
Distortions of the $\mathrm{V}_{2} \mathrm{O}_{7}$ groups can be described by considering the deviation of the $\mathrm{V}-\mathrm{V}$ vector from the threefold axis, the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angle and the torsion angle of the O_{Zr} atoms. In the ideal high-temperature structure all $\mathrm{V}-\mathrm{V}$ vectors lie parallel to a threefold axis and the center of symmetry at the bridging atom requires that O_{Zr} atoms of the two vanadiums be perfectly staggered (i.e. 60° torsion angles). In the lowtemperature structure $\mathrm{V}-\mathrm{V}$ vectors deviate by up to 5.4° from the threefold axis and torsion angles in certain groups decrease by up to 21°. These angles are shown graphically in Fig. 3 and are tabulated in Table 5.
The above results all suggest that the low-temperature form of $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ contains highly regular essentially undistorted polyhedra. Except for minor changes in VO_{V} bond distances, the major structural changes involve rotations of these coupled polyhedra, resulting princi-

Fig. 6. Dependence of $\mathrm{V}-\mathrm{O}$ distances on $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angle for $M_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ phases (open circles) and $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ (closed circles).

Table 5. Distortions of $V_{2} \mathrm{O}_{7}$ groups
$\mathrm{V}-\mathrm{V}$ distances, $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angles, tilt angle of $\mathrm{V}-\mathrm{V}$ vector from threefold axis and maximum deviation of $\mathrm{O}-\mathrm{V}-\mathrm{V}-\mathrm{O}$ torsion angle from 60° are given. Distances in A.

$\mathrm{V} n-\mathrm{V} n$	$\mathrm{~V}-\mathrm{O}-\mathrm{V}\left({ }^{\circ}\right)$	$d(\mathrm{~V}-\mathrm{V})(\mathrm{A})$	$\mathrm{Tilt}\left({ }^{\circ}\right)$	$\Delta($ Torsion $)\left({ }^{\circ}\right)$
$1-8$	159.33	3.4590	3.18	7.05
$2-7$	162.92	3.4710	5.42	17.17
$3-4$	166.18	3.4780	1.09	8.21
$5-6$	167.58	3.4800	5.36	3.32
$9-11$	180.00	3.5020	0.00	21.01
$10-10$	180.00	3.4920	0.00	0.00

pally in changes in the $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ and $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angles. It is interesting then to compare a purely geometrical model of the structure to the true structure. Distance least-squares modeling was performed in CRYSTALS (Watkin et al., 1985) using average $\mathrm{Zr}-\mathrm{O}$ bond distances of $2.072, \mathrm{~V}-\mathrm{O}_{\mathrm{Zr}} 1.671$ and $\mathrm{V}-\mathrm{O}_{\mathrm{V}}$ $1.7545 \AA$ (i.e. close to average values determined experimentally). Bond distances were restrained with an s.u. of $0.001 \AA$ and bond angles with an s.u. of 0.1°. Using these parameters an 'ideal' structure with perfect polyhedra and 180° bond angles will result using a cell edge of $26.56 \AA$. Reducing the cell edge to $26.296 \AA$ results in coupled rotations of these polyhedra. All such reductions in cell edge require, however, very minor distortions of the octahedral and/or tetrahedral bond distances and angles. The weights were chosen such that the relative distortions of distances and angles at a cell edge of $26.296 \AA$ matched those observed experimentally (i.e. standard uncertainty of all metal-oxygen bond distances in the model $\sim 0.005 \AA$, polyhedral bond angles $\sim 0.5^{\circ}$).

Such a structure matched extremely closely that derived experimentally. The range of $\mathrm{Zr}-\mathrm{O}-\mathrm{V}$ bond angles was $145.6-174.6^{\circ}$. Tilts of the ZrO_{6} octahedra (Table 4) are also very close to those observed. Average atomic shifts between the calculated and refined models

Fig. 7. Deviation of octahedral tilt angles from their high-temperature ideal values for the refined (closed symbols) and modeled (open symbols) structure. x tilts shown as circles, y tilts as squares, z tilts as triangles. Each horizontal line represents the zero for each individual tilt. The arrow represents a 20° range.
were only $0.03 \AA$, with a maximum shift of $0.06 \AA$. As a final test, refinement of the calculated model with only a scale factor and an equated displacement parameter for each atomic type was performed. The R factor of $R_{F}=$ 0.1194 compares with a value of 0.0645 for an isotropically refined structure.

4. Conclusions

The work described here represents, we believe, the first definitive structural refinement of the superstructure of an $A M_{2} \mathrm{O}_{7}$ phase. With no restraints imposed, a remarkably regular structure is obtained which contains essentially undistorted ZrO_{6} octahedra and VO_{4} tetrahedra. The coordination environments and hence calculated valences of all chemically equivalent atoms in the structure are essentially identical. The thermal motion of $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bridging O atoms on the threefold axis is comparable to that of other bridging O atoms. $\mathrm{ZrV}_{2} \mathrm{O}_{7}$ undergoes two phase transitions between its high-temperature and room-temperature structure, which reduce the overall cell volume by destroying 26/27 of the translational symmetry elements. This allows four of the six $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bridging groups to bend, whilst the remaining two remain fixed by symmetry at 180°. Further modeling of these phase transitions and a description of the intermediate (incommensurate) structure will be the subject of a forthcoming paper.

This work was supported through NSF grant No. DMR-9308530. Research was carried out in part at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences. We would like to thank Dr V. Korthuis for providing the single crystal used and Kemin Tan for assistance during the data collection.

References

Baerlocher, C., Hepp, A. \& Meier, W. M. (1977). DLS Software. Institute of Crystallography and Petrology, Eidgenössiche Technische Hochschule, Switzerland.
Banks, E. \& Sacks, R. (1982). Mater. Res. Bull. 17, 1053-1055. Buchanan, R. C. \& Walter, G. W. (1983). J. Electrochem. Soc. Solid State Sci. Technol. 130, 1905-1910.
Burdese, A. \& Borlera, M. L. (1960). Ann. Chim. (Rome), 50, 1570-1583.
Burdese, A. \& Borlera, M. L. (1963). Ann. Chim. (Rome), 53, 333-343.
Chaunac, M. (1971). Bull. Soc. Chim. Fr. pp. 424-429.
Fukuoka, H., Imoto, H. \& Saito, T. (1995). J. Solid State. Chem. 119, 98-106.
Gibbs, G. V., Downs, J. W. \& Boisen, M. B. Jr (1994). Silica Rev. Min. 29, 331-363.
Hagmann, L.-O. \& Kierkegaard, P. (1969). Acta Chem. Scand. 23, 327-328.

Haushalter, R. C. \& Mundi, L. A. (1992). Chem. Mater. 4, 3148.

Huang, C. H., Knop, O., Othen, D. A., Woodhams, F. W. D. \& Howie, R. A. (1975). Can. J. Chem. 53, 79-91.
Hudalla, C., Eckert, H. \& Dupree, R. (1996). J. Phys. Chem. 100, 15986-15991.
Khosrovani, N. \& Sleight, A. W. (1996). Inorg. Chem. 35, 485489.

Khosrovani, N., Sleight, A. W. \& Vogt, T. (1997). J. Solid State Chem. 132, 355-360.
Korthuis, V., Khosrovani, N., Sleight, A. W., Roberts, N., Dupree, R. \& Warren, W. W. Jr (1995). Chem. Mater. 7, 412417.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294 Copenhagen: Munksgaard.
Larson, A. C. \& Von Dreele, R. B. (1994). GSAS Software. LANSCE, Los Alamos National Laboratory, USA.
Levi, G. R. \& Peyronel, G. (1935). Z. Kristallogr. 92, 190-209.
Liebau, F., Bissert, G. \& Köppen, N. (1968). Z. Anorg. Allg Chem. 359, 113-129
Minor, W. (1993). XDISPLAYF Program. Purdue University, USA
Norby, P. (1996). Personal communication.

Otwinowski, Z. (1993). Oscillation Data Reduction Program. Proceedings of the CCP4 Study Weekend: Data Collection and Processing, compiled by L. Sawyer, N. Isaacs \& S. Bailey, pp. 52-62. Daresbury Laboratory, England.
Oyetola, S., Verbaere, A., Guyomard, D., Crosnier, M. P., Piffard, Y. \& Tournoux, M. (1991). Eur. J. Solid State Chem. 28, 23-36.
Pascard, R., Chaunac, M. \& Grison, E. (1971). Bull. Soc. Chim. Fr. pp. 429-435.
Peyronel, G. (1942). Gazz. Chim. Ital. 72, 83-88.
Sanz, J., Iglesias, J. E., Solia, J., Loailla, E. R., Aranda, M. A. G. \& Bruque, S. (1997). Chem. Mater. 9, 996-1003.
Seo, D.-K. \& Whangbo, M.-H. (1997). J. Solid State Chem. 129, 160-163.
Tillmanns, E., Gebert, W. \& Baur, W. H. (1973). J. Solid State Chem. 7, 69-84.
Völlenke, H., Wittman, A. \& Nowotny, H. (1963). Monatsh. Chem. 94, 956-963.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.
Withers, R. L., Evans, J. S. O., Hanson, J. \& Sleight, A. W. (1998). J. Solid State Chem. 137, 161-167.

Zah Letho, J. J., Oyetola, S., Verbaere, A., Taulelle, F. \& Piffard, Y. (1994). Eur. J. Solid State Chem. 31, 1009-1020.

[^0]: \dagger Supplementary data for this paper are available from the IUCr electronic archives (Reference: CR0528). Services for accessing these data are described at the back of the journal.

